NAVAL POSTGRADUATE SCHOOL
Monterey, California

AN APPROACHTO
MOBILE AGENT SECURITY IN JAVA
by
Roy John Virden
March, 1998
Thesis Advisor: Dennis M. Volpano
Second Reader: Nelson D. Ludlow

Approved for public release; distribution is unlimited.

DTIC QUALIZY INSPEUTAD 3

G0 2140866}

REPORT DOCUMENTAT|0N PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1998 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AN APPROACH TO MOBILE AGENT SECURITY IN JAVA

6. AUTHOR(S)

Virden, Roy John
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) gR';i':ﬁg:T"f(')"NG REPORT
Naval Postgraduate School NUMBER
Monterey, CA 93943-5000
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /
. MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.

[12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

For many years, people have talked about the advantages of programs that can roam networks and
provide services for a client. The programs, called agents, have many military applications as well. Among
them, for instance, is data mining, where an agent is dispatched to find information for a client.

There are security risks associated with agents. For instance, in the data mining example, a client
must be able to trust the information returned. If a trusted node in a network can be spoofed, then an
untrusted node can easily corrupt the results of the mining operation.

This thesis presents a protocol to guard against this sort of attack. The protocol assumes that every
trusted host knows all other trusted hosts. Though unrealistic for some commercial applications, it seems like
a reasonable assumption for military applications.

14, SUBJECT TERMS

d i . 15. NUMBER OF
Mobile Agent, Security, Java, Authentication protocol ' PAGES

99
16. PRICE CODE
17. SECURITY CLASSIFICATION OF | 18- SECURITY CLASSIFICATION OF | 45 gpeyriTy cLASSIFI-CATION | 20: LIMITATION
THIS PAGE OF ABSTRACT

REPORT Unelaseified OF ABSTRACT
Unclassified nclassiie Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

DTIC QUALITY INSPECTED 3

11

Approved for public release; distribution is unlimited

AN APPROACH TO MOBILE AGENT SECURITY IN JAVA

Roy John Virden
Lieutenant, United States Navy
B.A., Miami University, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
March 1998

Author: / Gy~ %
ﬁoy John /dn
Approved by: ' ‘

Dennis M. Volpano, Thesxs Advisor

&&me

Nelson D. Ludlow, Second Reader

q@Cgmf—»

Dan Boger, Cha1
Department of Computer Sc1ence

iii

iv

ABSTRACT

For many years, pedple have talked about the advantages of programs that can
roam networks and provide services for a client. The programs, called agents, have many
military applications as well. Among them, for instance, is data mining, where an agent
is dispatched to find information for a client.

There are security risks associated with agents. For instance, in the data mining
example, a client must be able to trust the information returned. If a trusted node in a
network can be spoofed, then an untrusted node can easily corrupt the results of the
mining operation. |

This thesis presents a protocol to guard against this sort of attack. The protocol
assumes that every trusted host knows all other trusted hosts. Though unrealistic for
some commercial applications, it seems like a reasonable assumption for military

applications.

vi

L. INTRODUCTIONccortitriiimritrinirieresecnesessieeesesaeesaesestsssessessesssensssssessssessssessssessasens 1
A. BACKGROUNDcootereeriiinieinecnsestesesestseeesee st eeseses et esesssesseseenes 1
1. Mobile Agents in the Military........ccccovveevieerieienenennceeeseeseeseessenaens 3
B. PROBLEM STATEMENTc.cotveiririinetreniesieneeeseecseeessteseeesesneseens 4
C. APPROACH ...ttt sacses s sscseste s sacsssnessensons 4
D. THESIS ORGANIZATION.......oovtiiriiiieicennt et ssesans 4
II. MOBILE AGENTS ...ttt ssetsse et esessessssessssssssssssssesssaee 7
A. WHAT IS A MOBILE AGENT? ...ttt enes 7
B. WHY MOBILE AGENTS?eitceeineeetererteeeeessseenesesesssssessesseons 7
C. EXAMPLES ...ttt e et sesseseessesaesosesessesasasessessesseseseseesnsene 9
II. AN APPROACH TO MOBILE AGENT SECURITYccovtrinrenretereeeescsaeene 13
A. THE MOBILE AGENT MODEL........ocoeniieniienciiesieestenieseseesieeennes 13
B. SECURITY RISKS....ctiiiiiiiiiriiniiineieieietecreseessssestesessesstsssesens 15
C. SECURE MOBILE AGENT TRANSMISSION PROTOCOL................ 16
D. SIMPLIFYING ASSUMPTIONScoimtiininiininrenreneiesennessssessennees 20
IV. IMPLEMENTING MOBILE AGENT SECURITY IN JAVA......cccocvvivivcinirennene 23
A. THE BASIC PROTOTYPE ...t ererenseeseeeesnensesaeneenes 23

B. JAVA IMPLEMENTATION OF SECURE MOBILE AGENT
TRANSMISSION PROTOCOLccoiiitiiriiieticnercestenesssteensssssesasasssssasesns 27
V. AMILITARY SCENARIO FOR MOBILE AGENTSccocvvuvniinmnirinnnienacenens 33
A. DATA MINING......ooitiiniiiinnrcteenisesestsisesaessesesssnsssssessessessessenseses 33
VI. CONCLUSION.....cuttiitiirieirienceistsicesestesessesesssstsseesesssesesnsessessesessessassesssssssescesseses 37
APPENDIX A. MOBILE AGENT CODEcccccvviriiiiiicnicinntiicintsennesesnsnesasessenne 39
1. INTRODUCTIONcoutierirririiinincnntitesisseeseessssssenessssssessssssessesssessonns 39
2. PRIMARY CODEcotecieiriermeiriecnieieeseesescssesienesessessssssssssassssessasnes 39

TABLE OF CONTENTS

vii

3. AGENTUTIL PACKAGEccceviutinitrinernrereesseere et sessseseseans 63

LIST OF REFERENCES.........ccoscoettminetrennneeisesistense e ssssesesssisssesesssesesesesssesessssesas e 81
BIBLIOGRAPHYccoovvuerererrrrrrenes esariseeesntresanressesssarsatssaaestttsestesenssattasnesensertesaasanaesnns 83
INITIAL DISTRIBUTION LIST ...cueuiririererereieeeiesies st soessesessesessssess e 87

viii

ACKNOWLEDGEMENT

Many thanks to my patient and loving wife, Susan, who has been a great source of
strength and encouragement all through this work

Thanks also to Professor Volpano and Major Ludlow, for letting me proceed on
my own until I needed some guidance, and for being right there when asked.

Thanks to Professor Irvine, Professor Hensgen and the entire NPS CISR
department for all the support and confidence in my ability.

ix

1. INTRODUCTION

A. BACKGROUND

Webster’s New World Dictionary defines an agent as “a person or thing that
performs an action or brings about a certain result, or that is able to do so.” The term
agent has been used for many years in computer science to describe a program that
performs a job on a user’s behalf. An agent normally executes on a single machine and
performs tasks of varying complexity and ability. One use of agents can be found in
today’s networks and distributed processing systems. “Key platforms, such as hosts,
bridges, routers, and hubs, may be equipped with agent software so that they may be
managed from a management station (Stallings, 1997).” The agent, in this case, monitors
the node’s active status and responds to information requests from network management
stations. Spelling checkers integrated in modern word processors can also be considered
agents. They simply monitor or scan input text, reporting any differences between input
strings and their own dictionaries to the main word processing program.

Software agents are rooted mostly in the artificial intelligence and distributed
systems areas of computer science. The availability of digital computers and the
assumption that real world aspects can be symbolically represented gave rise to the
research area of artificial intelligence at the Dartmouth Conference in 1956. The
development of agent research has been influenced by five parent disciplines: control
theory, cognitive psychology, artificial intelligence planning theory, object-oriented
programming and distributed systems. (Muller, 1996)

Control theory investigates the agent-world relationship from a machine-oriented

perspective whereas cognitive psychology deals with behavior and motivation theory. In

the 1970’s, classical artificial intelligence planning systems strongly influenced agent

design, viewing the problem-solving behavior of agents as a sense-plan-act cycle. The

1980’s brought the notion of the agent playing a central role in the research of distributed
artificial intelligence. (Muller, 1996)

Agents are historically divided into three classes: deliberative, reactive and
interacting. Deliberative agents rely on an internal representation of their world, and base
their actions on some form of complex symbolic reasoning. These agents are usually
modeled on beliefs, desires and intentions. In the mid 1980s, a new school of thought
emerged that was influenced by behaviorist psychology. It led to reactive agents. These
agents make their decisions at run-time, based on environmental sensor input. They
contain limited amounts of internal representation. The interacting agent class, beginning
in the late 1980s, focused on the coordination process and on mechanisms for cooperation
among autonomous agents rather than on the structure of these agents. In the past
decade, a considerable amount of effort has been dedicated to combining these classes in
order to overcome their individual limitations. (Muller, 1996) Blackboard Architecture is
one example.

Also in the 1980s, Minsky’s views became prominent in the world of agents and
intelligence. Minsky distinguishes between agents and agencies. In Minsky’s Society of
Mind, an agent is a simple non-intelligent part or process. On the other hand, an agency
is a collection or society of these simple agents demonstrating the appearance of
mtelligence. (Minsky, 1985)

With the advent of Java, there is renewed interest in the mobility of agents. The

Java Virtual Machine and Java’s class loading model, coupled with serialization, remote

method invocation and multithreading, have made prototyping mobile agent systems a
fairly straightforward task.

Mobile is defined as “moving, or capable of moving or being moved, from place
to place.” Thus, a mobile agent can perform varying tasks and can move from host to
host throughout a network. It has the ability to decide if and when it needs to move and
then request to be transported to the desired location. While traveling through a network,
it can search for information and execute commands at a remote server, eventually

reporting back to its client when its task is complete (Kalakota, 1996).

1. Mobile Agents in the Military

Software agents offer tremendous potential in supporting the Department of
Defense. Military intelligence analysts can benefit from a mobile agent that provides
remote sensor observation, data collection and situation reporting. Perhaps the greatest
benefit to the analyst is the dynamic nature of the agent. In a high operational tempo
scenario with continually changing situations and requirements, an analyst can dispatch
an agent with a request for information based on the most recent developments. An agent
can also encode decision-making logic in order to make decisions while at remote
locations.

Another benefit to the military is the ability for a soldier in the field with a
handheld device to dispatch an agent to a command and control center requesting further
instructions or local area intelligence data. The soldier can then shut down the device,
perform evasive ground maneuvers and then, at a later time, restart the device in order to

retrieve the results of the request.

Security is important to military users of mobile agents. The intelligence analyst
needs precise information when providing Indications and Warning support to forward-
deployed units and the soldier has to rely on his marching orders to stay out of harm’s
way. Thus, an agent’s client must have the confidence and trust that a dispatched agent

will execute in the manner desired and that all collected data are not corrupt.

B. PROBLEM STATEMENT

The objective of this thesis is to develop a trusted mobile agent model permitting [
a client to dispatch an autonomous agent into a network of databases and upon return of !
|

the agent, have confidence that the agent has not been subverted.

C. APPROACH

The approach is based on a trusted mobile agent model that uses a host-to-host
authentication protocol and public-key cryptography. Agents originate from trusted hosts
and are forwarded only to other trusted hosts. Every trusted host has a list of hosts which
it trusts. Certificates issued by a central issuing authority are used in the authentication
process. Mobile agents will be executed at remote hosts only following a successful
authentication agreement. Upon an agent’s return to a client, we know the agent has
visited only trusted hosts. Therefore, any returned results can be used with confidence.
We believe that the trusted mobile agent model can be useful in realizing mobile agent

applications in the military.
D. THESIS ORGANIZATION

Chapter II presents software mobile agents, providing examples that demonstrate

practical mobile agent use. Chapter III presents a trusted mobile agent model, discusses

the associated security risks and lists the simplifying assumptions. Chapter IV gives
details of an implementation of the model in Java and explains mechanisms used for
mobility and authentication. In Chapter V, a military related scenario is developed and

discussed. Chapter VI provides a summary and conclusions.

II. MOBILE AGENTS

A. WHAT IS A MOBILE AGENT?

A mobile agent is considered autonomous and, in general, consists of executable
- program code, along with some form of execution state. It carries with it everything
required to perform its tasks and need not rely on previously-visited hosts for execution.
An agent can execute on a particular host and decide it needs to transfer to another host.
It can then save its state, halt execution and forward itself to that host. Once it arrives at
the new host, it may continue where it left off.

With movement as a characteristic, a mobile agent should maintain a sense of
location or host identification. A mobile agent may have a home from which it originates
and can dispatch itself to a remote location or locations and perform programmed
operations. Eventually it may return home with a result or communicate results back to
the client via email or some other data transmission protocol. The agent’s journey may
be predefined with a planned itinerary or destinations may be determined as it travels,

depending on navigation decisions made at each stop.
B. WHY MOBILE AGENTS?

The benefits of mobile agents can be separated into two levels: a user level and a
distributed-system level.

At the user level, agents, in general, improve productivity by reducing client
workload, allowing more time for other activities. Kalakota and Whinston (Kalakota,
1996) list some typical reasons for software agents: managing information overload,

decision support, repetitive office activity, mundane personal activity, search and

retrieval, and domain experts. They also state the most important tasks performed by an

agent are “gathering information, filtering information and using it for decision making.”

These three benefits are valuable in a military setting.

An intelligent mobile agent can travel throughout a network and make real-time [
decisions, requiring no interaction with the sender. While trying to satisfy a query, it can
decide where it should go to find the necessary data for computation. Once there, it can
perform data filtering on behalf of the sender and, when necessary, may either return
home with the result or transmit it via other means. Since no communications are
required while in transit, the agent’s client is free to perform other activities. This also
permits the agent to respond more quickly to the client with the result of the query.

The distributed-system level provides even more justification for military mobile
agent applications. Military databases often contain large amounts of information such as
own-force status and location, cartography details, forecasted weather data,
reconnaissance findings, collected intelligence data and logistical statistics. Operational
planning requires a large mix of all these extremely dynamic databases, which are rarely
centrally located. Sending an agent out to search through these databases can prove to be
more efficient than maintaining a continuous connection, say with a database server. A
continuous connection often is unnecessary.

Agents performing data mining may need fewer packets, depending on the type of
filtering operation they perform. Consequently, distinguishing changes in the status of
forces by monitoring network traffic becomes more difficult.

Mobile agents offer the flexibility of providing immediate notification upon

finding a desired piece of information during a data mining operation. For example, an

agent could be programmed to search a list of hosts, collecting data along the way. If it
collects certain information that is contained in a predefined high-priority set that it
carries, then it may choose to transmit a response immediately back to the client.

The advent of mobile devices, such as laptops and personal, handheld
communicators are served well by mobile agent technology. Mobile devices share the
following three characteristics which demand the kind of support provided by mobile
agents (Harrison, 1995):

. tI‘hey are only intermittently connected to a network, hence have only

intermittent access to a server.

Even when connected, they have only relatively low-bandwidth connections.
They have limited storage and processing capacity.

Soldiers on the move, as mentioned in Chapter I, or submarines on missions that
allow them to surface only when necessary, could be users of intermittent connections
provided by agents. A military unit can formulate its request for information and
dispatch the agent via a short burst communications transmission. The unit could then
shut down communication lines, continue with the local mission at hand and, at a later

time, re-establish communications and retrieve the mobile agent’s reply.
C. EXAMPLES

A popular example often used when describing commercial use of mobile agents
is an airline reservation scenario. Versions of this scenario can be found in (Chess,
1995), (Farmer, 1996) and (Yee, 1997). Farmer focuses on four hosts: a customer host, a
travel agency host and two servers owned by competing airlines (Farmer, 1996). Chess
uses a similar scenario (Chess, 1995). Yee studies a mobile agent that travels through a
series of airline reservation servers (Yee, 1997). In both cases, it can be assumed that a

travel agency programs the agent to provide a service for a customer.

Generally, in these examples, a customer desires to make an airline flight
reservation based on destination, flight time availability and lowest cost. An agent,
acting on behalf of a client, visits a series of aitline servers. At each server, the agent
queries the flight database and stores the results. Having collected enough flight
information, the agent decides on a travel plan based on the customer’s desires. The
agent may then forward itself to the airline server with the “best” offer, make the

reservation and, finally, return home with the results. \

There are a number of security concerns associated with this example based on
the competitive nature of airline agencies in the commercial world. First, we must note
that “it is impossible to hide anything within an agent without the use of cryptography
(Chess, 1995).” Cryptography can conceal collected data but does not prevent a
malicious host from corrupting or deleting it. Also, in order for the agent to process the
collected data it must be readable. This means it must not be encrypted or the agent must
carry the decrypting key. Now since it is impossible to hide anything within an agent, the
latter provides the malicious host the opportunity to obtain the key and read collected
data. Therefore all hosts will have access to data contained within an agent’s state.

In the airline flight reservation example, a malicious airline server could attempt
to win business by altering flight records collected so far. The greedy server might raise
its competitor’s fares in hopes of being chosen as the airline with the lowest cost or just
delete the other records altogether. In these competitive commercial systems, secrecy
and integrity are important.

Another practical use of mobile agents is providing safeguards and counter-

measures in distributed systems. The safeguard of intrusion detection in a network can

10

greatly enhance system security. Farmer describes an intrusion protection system of
mobile agents that actively monitor network activity for suspected attacks. Once an
intrusion has been detected, a response team of agents is deployed to activate the
appropriate counter-measures. (Farmer, 1996) In the case of a network virus being
detected, an agent could be sent out transporting a bug fix along with instructions for
applying it (Black, 1997). Employing agents in these distributed detection and response
systems makes use of an agent’s mobility, flexibility and decision-making capabilities.

There are also security issues involved in these distributed intrusion detection and
response systems. As mentioned in (Farmer, 1996), intruders could debilitate a host
system on which the agents need to run by manipulating the server in some way or just
causing it to crash. An intruder might insert hostile agents or attempt to alter or trick the
legitimate agents into performing malicious tasks. These issues point out the importance
of agent authentication, integrity and availability.

Another example is procurement. Here multiple agents attempt to bid for goods
or services offered by an auctioneer agent or host. This is considered a more complex
model in (Chess, 1995). The agent’s goals and monetary resources must be hidden from
other agents and untrusted hosts. Typical procurement examples include electronic
malls, flea markets and sealed bidding auctions. This example provides a challenging
security exercise in attempting to devise a method ensuring that each agent’s attributes
remain secret.

Agents can also be useful in the graphics world. Minar presents an example where
a computer animation is being constructed by a large entertainment firm (Minar, 1996).

A mobile agent first visits a host that holds the requirements of the construction. The

11

agent then moves to a ‘render farm’ and spawns many agents to produce the frames of the
animation. Finally, the agent collects the frames and takes them to a final production
host that combines the frames and packages the resulting movie. Depending on the

proprietary concerns of the firm’s product, the secrecy and integrity requirements in this

example can be critical.
A mobile agent’s dynamic nature allows it to actively respond to real-time events ‘
in the fast-paced, changing world of distributed systems. Whether employed in a
commercial application where electronic monetary accounts are of prime concern or in a
military setting where a nation’s defense and human lives are at stake, mobile agent
security needs to be addressed. This thesis addresses some of these issues in a military
scenario, namely data mining, and develops an agent transmission protocol that permits

use of mobile agents with confidence.

12

III. AN APPROACH TO MOBILE AGENT SECURITY

A. THE MOBILE AGENT MODEL

What is our basic mobile agent model? The basic mobile agent model contains
the following components: a mobile agent, a client, a network of hosts and host
databases.

A mobile agent, in general, consists of executable program code and some form
of execution state. This model represents mobile agents as agent folders. An agent
Jolder contains executable code, state information, a client’s identification and password
and perhaps a session key. All gathered data or dynamic state information is stored in the
state field of the folder. The client’s identification and password are provided in case
client authentication is needed at remote hosts. If an agent is required to collect classified
data then a session key is provided in order to encrypt the data while in transit. An agent
packet is the basic container used to transport agent folders from host to host.

The agents can be programmed to gather information, fuse the collected data,
eliminate redundancies, highlight conflicting information and, lastly, summarize the
results, creating a useful product.

An agent executes at a host as long as it takes to complete its mission. If an agent
has completed its mission and does not need to be forwarded to another host, then it
terminates immediately.

An agent may be dispatched to another host for one of the following reasons:

e [Initial dispatch from the client.

The agent determines that the requested information is not available on the

current host and forwards itself onward to another host listed in a pre-planned
itinerary.

13

e The current host could recommend other hosts it should visit that may have
relevant information.

» Dispatching could be triggered by the collection of a certain piece of
information requiring the agent to return to the client for continued operations.
For example, upon notification that a particular type of enemy aircraft has
been launched from a particular airfield, the agent needs to go home to display
the information and insert the data into the client’s database.

An agent can forward itself, if necessary, to visit any number of hosts i
simultaneously. Further, an agent communicates only with hosts on which it resides.
There is no agent-to-agent communication in this model for reasons of simplicity.

The client is a user on the originating host. This is where the mobile agent
initially executes. The client dispatches an agent and the agent returns to the client with
its results.

Network hosts are all interconnected machines, each providing similar socket
connection services. Each network host has an agent packet server listening for a
connection request to be received. Upon receipt, the executable code is run and the state
information is made available for agent use.

Databases reside on each host. They are considered read-only databases with
respect to visiting mobile agents. Agents are given only read access on all hosts, except
the originating host. This is done only to keep the model simple. The agent can access
the databases either directly or via a system specific interface. Agent execution may
differ according to mission or application and will be configured accordingly to interact
with the intended database or system interface. Agent programmers have advance
knowledge of database system interfaces on each machine that may be visited by the

agent.

14

B. SECURITY RISKS

Military operational environments often require requests for intelligence or
targeting information. It is common for the results to be used in making decisions that
could endanger human safety or affect delicate foreign relations. The basic model permits
a host system to dispatch an autonomous agent throughout a network of databases, collect
data and return a result. Associated with the basic model are a number of security
concerns.

Security threats to a system fall into three aspects: secrecy, integrity and
availability. Secrecy ensures that users only access information to which they are
allowed. Integrity means a process remains free from corruption and unauthorized
changes. Authentication verifies the origin of the sender. Availability means that the
computer system’s hardware and software keeps working efficiently and the system is
able to recover quickly and completely if a disaster occurs. (Russell, 1991)

A mobile agent has two generalized locations. The agent is either resident on a
host or in-transit between hosts. While an agent is executing on a host it is vulnerable to
all three security threats. As noted in Chapter II, hosts have access to all data contained
in an agent. Agent secrecy, integrity and availability are all assumed to rely on the host
being well behaved.

An agent moving from host to host is susceptible to common network attacks.
Communications media and equipment are points of vulnerability to any data being
transmitted. A mobile agent can be monitored to obtain private information. The agent

could even be altered with an unauthorized modification during network travel, resulting

15

in an integrity violation. Although denial of service attacks exist, they are beyond the
scope of this thesis and are not considered.
These threats to mobile agent secrecy and integrity are treated by the following

protocol.
C. SECURE MOBILE AGENT TRANSMISSION PROTOCOL

We begin with a base protocol we call forward-and-authenticate. It does not
require a certification authority and guarantees secrecy, integrity and authentication of
mobile agent folders while in-transit. Then we describe a variation of this protocol called
authen;cicate-forward-authenticate. It is based on the Secure Password Transmission
Protocol (Volpano, 1997) and requires a certification authority. The Secure Password
Transmission Protocol provides the secure transmission of a password from a client to a
server followed by the secure transmission of information from that server back to the
client. The Secure Mobile Agent Transmission Protocol, however, provides
authentication and safe transmission of mobile agents from host to host.

A public key cryptography system is used and it is assumed all hosts have access
to the public key of the host to which they wish to forward an agent. It is also assumed
that receiving hosts have access to the public key of the sender. See figure 1. When an
agent executing on host A, requests to be dispatched to another host, B, the sending host
encrypts the agent folder (af) with host B’s public key, P, to provide secrecy. Host A
then uses a mutually available one-way hash function, H, to produce a hash of the agent
folder, H(af). This hash is encrypted with Host A’s private key, S, to produce (H(af))’-.
The encrypted hash of the agent folder will provide authentication and integrity and

simulates a digital signature. We use a single key pair for both asymmetric cryptography

16

and digital signatures. The resulting agent folder, hash and host’s name are then sent to

host B in the agent packet container (ap).

Host A Host B
SaPa Sy/Py
Py P,
Agent Folder
send agent folder to B » | (af)B, (H(af))A, A

ap((af)’8, (H(af)%4, A) o) .
if verifies using A’s public key

[if user ID & password match]
execute agent code

Figure 1. Basic Secure Mobile Agent Transmission Protocol

Upon receipt, host B decrypts the received agent folder with its private key, Sg,
and uses the same hash function, H, to produce a hash of the received agent folder. The
received hash is decrypted with the public key of host A, P4. (If B has no public key for
the host name provided in the folder, then it drops the folder.) If the two hashes match
then the received agent folder is authenticated to be from host A and has not been
modified. Host B then performs any necessary authentication of the client on whose
behalf the agent wishes to execute. This will require the password in the agent folder.
Finally B executes the agent.

The same protocol applies whether the agent requests to be forwarded to another

host or to return home.

17

A variation is now introduced where the connecting hosts do not know each
other’s public keys. It is an authenticate-forward-authenticate protocol. Here a
certificate-based system is used and it is assumed that all hosts have access to the public
key, Pca, of a central certification authority, CA. Certificates in this model, CERT4 and
CERTsp, include host name and public key only and are encrypted with the CA’s private
key, Sca.

All connected hosts initially acquire the CA’s public key, Pca. Next, in order to
receive mobiie agent packages, a host obtains a signed certificate from the CA,
(CERTA)*, containing the host’s identity and public key. At this point, the host is ready
to send or receive mobile agent packages. See Figure 2. Agent packages also contain a
boolean field indicating whether‘the agent packet is a certificate request or a packet
containing the encrypted agent folder along with its hash and the host’s certificate.

Empty fields are represented by null in the figure.

When an agent requests to be dispatched, the sending host, A, connects to a
remote receiving host B and requests a certificate for B. Host B replies by sending its
certificate, (CERTB)SC", which is host B’s name and public key, encrypted with the CA’s

private key.

18

Certification Authority

CERT, ScaPey CERT,
(CERT,) 5cA (CERTy) cA
Host A Host B
SA/P A SB/P B
Pea Pea
(CERT,) ScA (CERTy) Sca
Certificate Request
send CERTj, request to B ap(1, null, null, null) send CERT reply to A
o Certificate Reply
(CERTy,) Sca - ap(1, null, null, (CERTy) 5cA)
if verifies & B’=B
send agent folder to B
Agent Folder » | (a)®, (H(aD) 54, (CERTy) Scr
ap(0, (af) "5, (H(af)) 54, (CERT,) 5¢4)
if (verify P, is A’s public key
& A € {Trusted Hosts}
& H(af) verifies using P,)
then execute agent code

Figure 2. Secure Mobile Agent Transmission Protocol with Certificate Authority

Upon receipt, host A decrypts host B’s celitiﬁcate with the CA’s public key
revealing a host name and associated public key. This confirms that the public key in the
certificate is the public key of the received host name found in that certificate. Host A
compares the received host name B’ with the requested host name B. If they match, host
A now has host B’s ;;ublic key. Next, as in the original protocol, the agent folder is
encrypted with host B’s public key to provide secrecy, (af)™>. Host A then uses a
mutually available one-way hash function, H, to produce a hash of the agent folder,
H(af). This hash is encrypted with Host A’s private key to produce (H(af))**. The
encrypted hash of the agent folder will provide authentication and integrity, and simulates
a digital signature. Again, this method of signing, with the already available keys, allows

the server to maintain only one set of keys per connected host instead of two. The

19

resulting agent folder, hash and Host A’s certificate, (CERTA)SCA , are then sent to host B

in an agent packet.

Upon receipt, Host B decrypts the received certificate with the CA’s public key

revealing a host name and associated public key. If host B chooses to communicate with
the received host name, it decrypts the received agent folder with its private key and uses ‘
the same hash function, H, to produce a hash of the received agent folder. The received

hash is decrypted with the public key of host A. If the two hashes match then the

received agent folder is authenticated to be from host A and has not been modified. Host

B then performs any necessary authentication of the client, using the password provided

in the agent folder, and then executes the agent.
D. SIMPLIFYING ASSUMPTIONS

It is important to note that certain simplifying assumptions have been made in
developing a model demonstrating that mobile agents can be used in confidence,
employing the standard uses of public key cryptography and certificates. The following
assumptions make this possible.

In the military world, it is common to communicate with, and request information
from, a predetermined set of suppliers in which some degree of trust exists. Examples
would be national and theater intelligence collection and analysis centers, mapping
agencies, meteorological and océanographic centers, etc. This model uses this
characteristic in that it maintains a list of trusted hosts. Thus, agents will only be
forwarded to other trusted hosts.

All useful agents originate from a trusted host and are only forwarded to other

trusted hosts. Any originating trusted host is the one from which an agent is launched

20

and to which it eventually reports the result of its execution. A trusted host promises to
correctly execute agent insfructions and not to violate the integrity of the software agent’s
content. Included is the promise not to misuse the secret session key included in the
agent folder which is used by a host to encrypt sensitive data in an agent’s folder.

Trusted hosts promise to keep their servers secure from external attackers using
common available methods such as firewalls, virus scanners and strong identification and
authorization mechanisms.

Each trusted host knows all other trusted hosts to which it is connected and which
it trusts. A trusted host may be connected to other hosts that it considers not trusted or of
unknown safety. A host will authenticate the public key of another trusted host on behalf
of an agent prior to forwarding the agent to that host. A host will not attempt to transfer
an agent to a host not considered trusted.

All trusted hosts consist of an agent handler daemon and associated utility
software including a public key cryptography suite. All trusted hosts use the Secure
Mobile Agent Transmission Protocol, described in this thesis.

A certification hierarchy will most likely be used in networks with a large number
of trusted hosts. This model assumes a single CA is used. Certificates normally include
a specific validation period and, upon expiration, new certificates are negotiated. This
model assumes that certificates have unlimited lifetime and does not include timestamps
in the certificates. Certificates sometimes use random numbers as one-time pads
preventing replay. This model does not include generated random numbers in
certificates. These methods and features treat important security issues. Certificates in

this model include host name and public key only for reasons of simplicity.

21

These simplifying assumptions are essential to the success of this model. If an
agent successfully returns to the original client then the result can be trusted. Here,
trusted means the agent returns with results that can be obtained by visiting only trusted
hosts in the network. The strength of this statement ultimately rests on the strength of

public key cryptography and on the ability to keep private keys private.

22

IV. IMPLEMENTING MOBILE AGENT SECURITY IN JAVA

A. THE BASIC PROTOTYPE

The Java Virtual Machine and Java’s class loading, coupled with serialization,
networking, multi-threading and the cryptography architecture have made prototyping the
trusted mobile agent model a fairly simple task. The prototype was developed on four
networked Sun SPARC Station 10 machines with the Solaris V2.5 operating system
using JDK1.1.

The mobile agent implementation is based on my advisor’s active network design
and much of the source code is rooted in the exercises and projects from the CS3973
Advanced Object-Oriented Programming in Java course at the Naval Postgraduate
School, Monterey, California.

The implementation is a certificate-based authenticate-forward-authenticate
protocol. The code differs slightly from the Secure Mobile Agent Transmission Protocol
model in that Host A’s certificate is forwarded in the initial request verses being
forwarded in the final agent packet which contains the agent folder.

An agent packet is the basic container used to transport mobile agents from host
to host. The agent packet contains an agent folder and a signed certificate using the
Digital Signature Algorithm, DSA, supported by the cryptography architecture. A
boolean flag indicates whether the packet is carrying an agent folder or a signed

certificate. This flag is used in implementing the transport protocol. See Figure 3.

23

AgentPacket

AgentFolderBA AgentFolderBASignature SignedCertificateBA T
: Eﬂ

T(sen’uliu) T (perilize)

SignedCertificate
AfcntFoldcr
CertificateBA T CemIcatcBASi ture
|: i}

(serialize)

Centificate

Figure 3. Agent Packet with DSA Design.

The agent folder contains five members: originating client’s identification, user
password, agent bytecode, agent state, a boolean value signifying if the session key is in
use and a session key. A BA at the end of the variable name simply indicates the form of
a byte array.

public class AgentFolder implements Serializable {
public String wuserlD;
public String password;
public byte[] agentCodeBA;
public byte[] agentStateBA;
public boolean encrypted = false;
public byte[] sessionKeyBA;

}

The basic mobile agent model implements a multi-threaded TCP server class

called AgentPacketServer. This server listens for a connection request on port

6011 (arbitrary) for an agent packet to be received. Once the server receives an agent

24

packet, it creates a new thread and adds it to a CPUscheduler, which handles the
scheduling of incoming agents.

The AgentPacketServer then organizes incoming agents into executable
class files. It does this by instantiating the agent Code bytecode contained in the
AgentFolder. The mobile agent’s source code is contained in the AgentCode class

that implements the AgentCodeInterface:

public interface AgentCodeInterface {
public void exec(agentUtil.AgentFolder b,
agentUtil.AgentCodeUtilityInterface u)
throws Exception;

The AgentCode class consists of the single method exec. This method contains the
decision-making logic of the agent and is called by Agent PacketServer. The

pseudocode for the military scenario can be seen in Figure 4.

25

if at Joint Task Force Headquarters
if initial visit
forward agent to Theater Intelligence Headquarters
else
display collected data

if at Theater Intelligence Headquarters
search database for locations able to observe F-4 activity
forward agent to Sub-Regional Intelligence Center

if at Sub-Regional Intelligence Center
search database for data related to F-4 activity |
forward agent Joint Task Force Headquarters |

Figure 4. Military Scenario pseudocode.

The exec method takes, as parameters, the incoming agent folder and an instance
of the AgentCodeUtility class. The agent folder is included to allow state
manipulation and agent forwarding. The AgentCodeUtility class provides public
utility methods that are available to agents on each host. An agent can retrieve the name
of the local host using the get Location method. fwdAgent sends a serialized
agentPacket to another host when requested by the agent. getState and
saveState retrieve and store the state field of the agent folder. The AgentState class

contains three fields:

public class AgentState implements Serializable {
public boolean initialVisit;
public String tempDestination;
public String collectedData;

26

initialVisit is set to true when first executing on the originator’s host. This allows
the agent to know when it has returned from its travels. tempDestination stores a
variable host name permitting the agent to alter its itinerary based on collected
destinations. Information collected along the way is stored in the collectedData
field. The getDestination and getData methods read from a file to simulate

accessing a database.

B. JAVA IMPLEMENTATION OF SECURE MOBILE AGENT

TRANSMISSION PROTOCOL

The certificate authority is simulated by the BuildCertificate class
included on each host. BuildCertificate creates a certificate and inserts the local
host’s name and DSA public key. DSA digital signature support is provided by the Java
Cryptography Architecture. This is used to simulate the model’s use of a public key
cryptography standard, such as RSA, which is not implemented by the Java 1.1 APL (It is
available in JSafe 1.0, though.)

BuildCertificate then encodes the certificate by signing it with the
certificate authority’s DSA private key. All hosts are manually preloaded with the
certificate authority’s DSA public key simulating CA access.

Following a fwdAgent request and prior to sending an agent folder, the
destination must be authenticated. This is accomplished in the private
destinationAuthenticates method of the fwdAgent utility method. See
Figure 5. The local signed certificate is retrieved from the cert file, loaded in an agent
packet and sent to port 6011 on the destination host. At the destination host, the

AgentPacketServer reads the incoming packet and decodes the signed certificate.

27

It then checks to see if the host name in the certificate is a member of a set of trusted
hosts. Ifitis, a reply in the form of an agent packet including the destination host’s

signed certificate is sent to port 6012 of the source host. The

destinationAuthenticates method continues at the souce host by reading the
incoming reply and decoding the signed certificate. A check is made to ensure the
received certificate’s host name is the same as the request destination. Ifit is, the |
destination has authenticated and the agent folder can be forwarded.

The agent folder is signed with the local host’s DSA private key and sent to port
6013 of the destination host. Here the AgentPacketServer continues on the

destination host and decodes the agent packet by verifying the signature.

28

AgentCodeUtility
(fwdAgent)

“dest failed
to authenticate”
close socket

destination
Authenticate

Agent Folder
Agent L
Packet receive timeout
Handler lapAgent close socket
(run)

F «“agentFolder not rcvd”
close socket

agent F
Folder

verifies

“agent not verified”
close socket

“user not auth”
close socket

Execute
agentCode

CRR = CertificateRequestReply

AgentCodeUtility
(destinationAuthenticates)

Certificate Request
Frermemem——— '""‘"""'"‘"""“"“"‘l
i Agent _ !
! Packet receive | timeout !
lapAgent close socket !
'Handler :
+ (run) ;
H '
| ‘ =
: “certificate not revd” |
' socket remains open |
' (closed by sender) |
i E
]
: T :
: :
!)
')
; :
! trusted F «sender not trusted” E
H host socket remains open '
E (closed by sender) '
= E
! '
| T =
]
: send , '
1
: apAgent Certificate Reply E
]
S :
timeout
close socket

F

F

dest
verifies

retum true

“rtn certificate not rcvd”
return false
(socket closed remotely)

“requested dest verifies”
return false
(socket closed remotely)

Figure 5. fwdAgent Authentication Protocol

29

A user identification check is then made. This simulates the possible need for an
agent originator to maintain account information at the destination host. Following this
check the agent is executed as described above.

The classes and interfaces for this implementation are shown in Figure 6.

30

API Classes Package AgentUtil Primary Classes
== AgentPacket
|
I
i
- AgentFolder GenerateDSAKey
!
]
Serializable AgentState BuildCertificate
r-1 SignedCertificate StartAgent
Principal - PrincipalHost AgentPacketServer
Ce{?}iﬁcate CertificateClass
AgentCodelnterface AgentCode
IAgentCodeUtilityInterfa AgentCodeUtility
Thread CPUScheduler
Queue
L SecurityManager // MobileAgentSecurityMgr
CodeLoader
Key
ProgramLoader Abstract Class
extends
________ implements

31

Figure 6. Classes and Interfaces

V. AMILITARY SCENARIO FOR MOBILE AGENTS

A. DATA MINING

The following is a military scenario exemplifying, agent activation, dispatching
and returning home. It is a data mining scenario, using agents to search a network of
intelligence-related databases. The data being mined is specific to intelligence, but can
be generalized to any information type. Other types of military related information types
include weather, cartography and logistics.

The players in this scenario are a Joint Task Force Headquarters, a Theater
Intelligence Headquarters and two Sub-Regional Intelligence Centers. See Figure 7. The
Joint Task Force Headquarters is an integrated service composition charged with tactical
command and control of a specific military mission. Examples of military missions
include strike operations, non-combatant evacuation operations, amphibious assaults,
disaster relief, etc. The Theater Intelligence Headquarters is the regional intelligence
information manager. It provides operational tasking for many Sub-Regional Intelligence
Centers. The Sub-Regional Intelligence Centers are basic intelligence data collection
agencies located on land, air and sea based platforms. They contain various sensor types
and provide specialized intelligence information. This information can be based on radar
data, imagery, visual contacts, etc.

The Joint Task Force Headquarters in this scenario is planning an air strike
operation targeted at some enemy location. During this strike mission, a number of
friendly aircraft will fly over the area of interest and drop a payload of bombs intent on

destroying the target. Of concern to the Joint Task Force Headquarters is an enemy

33

Joint Task Force
Headquarters

Y.

Theater Intelligence
Headquarters

.

Sub-Regional Sub-Regional
Intelligence Center Intelligence Center

Figure 7. Military Data Mining Scenario

airfield near the target which could launch a defensive sortie of say, F-4 fighter aircraft.
This enemy sortie could interfere with the mission.

Prior to ordering the friendly aircraft to launch, the Joint Task Force Headquarters
needs to be aware of any enemy aircraft activity at the airfield in question.

A request is made by a user at the Joint Task Force Headquarters to find out if any
F-4 fighter aircraft activity has been observed at the enemy airfield. An agent is activated
and given the following tasks:

¢ Go to the Theater Intelligence Headquarters and find out if enemy F-4 fighter

aircraft can be launched from the airfield.

e Find out where this activity can first be observed and go there.
e Collect any recent F-4 related activity and return with the collected details.

The agent dispatches to the Theater Intelligence Headquarters and receives a

positive confirmation to the first query. The second query is responded to by advising the

34

agent to visit two Sub-Regional Intelligence Centers tasked with covering the airfield.
These include a land based radar station and an overhead sensor center. The agent then
dispatches itself to each suggested location and queries the local databases for indication
of any F-4 aircraft activity. One of the agents soon sees an F-4 launch report associated
with the airfield and immediately returns home to report the activity along with launch
time and number of aircraft launched. The other agent also retrieves a similar launch
report and returns home confirming the earlier report.

By using the trusted mobile agent model described in Chapter III, the Joint Task
Force Headquarters can, with confidence, make critical decisions based on the data
collected at the trusted remote sensor sites. They are assured the results to their queries
are authentic and accurate. They also know the data has been kept private and not
disclosed to the enemy based on the level of public key encryption used in the

implementation.

35

VI. CONCLUSION

This thesis has demonstrated that a trusted mobile agent model can be useful in
realizing agent applications in the military. This is based upon the assumption that all
useful agents originate from a trusted host and are only forwarded to other trusted hosts.
This is a valid assumption in the military world where it is common to communicate with
a predetermined set of agencies among which some degree of trust exists. This model
requires that each host maintain a list of hosts that it can expect will send only
trustworthy agents and not malicious code.

The approach employs the Secure Mobile Agent Transmission Protocol using
public key cryptography. One version of it requires storing host public keys on each
host. Another version allows more flexible re-keying, but depends on certificates signed
by a certification authority. This version is useful when a host’s public key must change,
for example, if its private key has been compromised or revoked. Since hosts do not
store each other’s public keys, re-keying a host merely amounts to issuing a new
certificate for it. Of course re-keying the certificate authority would affect all hosts.

Although a mobile agent system could be implemented in any programming
language, Java is a natural choice with its built-in support for networking and dynamic
class loading. Java exhibits platform independence. This is crucial for these software
agents that are mobile and execute in a heterogeneous domain, like the Internet. Java
also provides serialization for easy storage of object state, allowing data to be transported

from host to host.

37

Another agent-based military scenario can be found in (Edmiston, 1998). Their

scenario is similar and is used to describe a framework for an agent-based decision

making application.

This thesis attempts to show that a client can dispatch an autonomous agent into
an open network of known trusted databases and upon return of the agent, have
confidence in its results. Obviously this is important in military operational
environments where results returned by an agent may be used in making decisions that

could endanger human safety or affect delicate foreign relations.

APPENDIX A. MOBILE AGENT CODE

1. INTRODUCTION

The mobile agent implementation is based on my advisor’s active network design
and much of the source code is rooted in the exercises and projects from the CS3973
Advanced Object-Oriented Programming in Java course at the Naval Postgraduate
School, Monterey, California.

The implementation is a certificate-based authenticate-forward-authenticate
protocol. The code differs slightly from the Secure Mobile Agent Transmission Protocol
model in that Host A’s certificate is forwarded in the initial request verses being
forwarded in the final agent packet which contains the agent folder.

The mobile agent code is grouped into two sections, the primary code and the
AgentUtil package.

The primary code section contains the classes that generate DSA keys and build
the certificates used in the model implementation. Also included are the Agent Packet
Server, Start Agent, Agent Code, Agent Code Utility and Mobile Agent Security
Manager classes.

The AgentUtil section contains the classes and interfaces used in support of the
primary code.

The third section of this appendix contains the data and destination files used in
simulating databases in the network. Also included is a printout of the originating host’s
display following a successful run of the agent.

2. PRIMARY CODE

//***

// File: AgentCode.java

// Name: LT Roy J. Virden

// Date: 25 November 1997

// Advisor: Professor Dennis Volpano
// System: Solaris V2.5 JDK1.1.2

//***

import java.io.*;
import agentUtil.*;

public void exec(AgentFolder af, AgentCodeUtilityInterface u)

39

throws Exception {

AgentState as = u.getState(af);

if

/7

if

//
if

("rol40203.cc.nps.navy.mil".equals(u.getLocation())) {
if (as.initialvVisit == true) { // initial visit = true
as.initialVisit = false;
System.out.println("agentCode: I'm at Home (" +
u.getlocation() + ")");
af.agentStateBA = u.saveState(as);
System.out.println("agentCode: forwarding agent to TIHQ");
u. fwdAgent (af, "rol40204.cc.nps.navy.mil");
}
else {
System.out.println("agentCode: I have returned Home (" +
u.getLocation() + ")");
System.out.println("agentCode: returned data requested:");
System.out.println("agentCode: " + as.collectedData);
}
we know location of TIHQ

("rol40204.cc.nps.navy.mil".equals(u.getLocation())) {
System.out.println("agentCode: I'm at TIHQ (" +
u.getLocation() + ")");

// here we run through a database and an agent is forwarded

// to each site able to observe F4 activity.
// agentState.destination field is used

as.tempDestination = u.getDestination("dest/destinationl");

af.agentStateBA = u.saveState(as);
System.out.println("agentCode: forwarding agent to SRIC (" +
as.tempDestination + ")");

u. fwdAgent (af, as.tempDestination);

as.tempDestination u.getDestination("dest/destination2");

af.agentStateBA = u.saveState(as);

System.out.println("agentCode: forwarding agent to SRIC (" +
as.tempDestination + ")");

u. fwdAgent (af, as.tempDestination);

compare current location against agentState.destination field

((as.tempDestination) .equals (u.getLocation())) {

System.out.println("agentCode: I'm at SRIC (" +
u.getLocation() + ™)");

// search a database and store data field in agentState.data
// for each data entry related to F4 activity
// and then forward the agent home

as.collectedData u.getData();

af.agentStateBA = u.saveState(as);
System.out.println("agentCode: forwarding agent to Home");
u. fwdAgent (af, "rol40203.cc.nps.navy.mil"); // go home

40

//***

// File: AgentCodeUtility.java

// Name: LT Roy J. Virden

// Date: 29 November 1997

// Advisor: Professor Dennis Volpano
// System: Solaris V2.5 JDK1.1.2

//***

import java.net.*;
import java.io.*;
import java.util.*;
import java.security.*;
import agentUtil.*;

public String getLocation{() ({
String localHost = null;
try {
localHost = InetAddress.getLocalHost ().getHostName();
} catch (Exception e) {
System.out.println(e);
}

return localHost;

public void fwdAgent (AgentFolder af, String destination)
throws Exception ({

try {

[/==mmmmmmmm

// create AgentPacket and authenticate destination

/) ==mmmm =

AgentPacket ap = new AgentPacket (true);

if (destinationAuthenticates(destination, ap) == true) {
/[—=——m————
// set AgentPacket to agent, serialize, sign and send
[/~
ap.certificateRequestReply = false; // flag agent packet
ap.signedCertificateBA = null; // remove certificate

byte[] afBA = serialize(af);

42

// get privateKey, sign agentFolder byte[], pack & send it

e

FileInputStream fisPrivateA = new FileInputStream("keys/" +
this.getLocation() +

" privateKey");

ObjectInputStream oisPrivateA =

new ObjectInputStream(fisPrivatel):;
Signature dsa = Signature.getInstance ("DSA");
dsa.initSign((PrivateKey)oisPrivateA.readObject());
dsa.update (afBA);
byte []1 afBASignature = dsa.sign{();
ap.agentFolderBA afBA;
ap.agentFolderBASignature afBASignature;
byte[] apBA = serialize(ap);
sendAPBA (destination, 6013, apBA);

Il

System.out.println("Destination Authenticated”);
System.out.println("agentPacket forwarded to " +
destination);

} // end if (destinationAuthenticates(destination,ap) == true)

else System.out.println(destination +
" failed to authenticate!");

} catch (Exception e) {
System.out.println(e);

private static boolean destinationAuthenticates(String dest,

AgentPacket ap)

throws Exception {
try {

FileInputStream fisSCBA = new
FileInputStream("certs/SCBA Certificate");

ObjectInputStream 0isSCBA = new ObjectInputStream(fisSCBA);

ap.signedCertificateBA
bytel] apBA = serialize(ap);
sendAPBA (dest, 6011, apBA);

// (goto AgentPacketServer.java)

((byte[])oisSCBA.readObject());

// read returning AgentPacket reply, deserialize and cast

[/ ==mmmmmm =
byte[] incomingObject = new byte[65507];
ServerSocket ss2 = new ServerSocket (6012);

43

Socket s2 = ss2.accept();
receiveAPBA (incomingObject, s2);
ss2.close();

ap = (AgentPacket) (deserialize (incomingObject});
/)=

// handle certificate

[[===——————

if (ap.certificateRequestReply == true) ({
CertificateClass ¢ = new CertificateClass();
ByteArrayInputStream bais =
new ByteArrayInputStream(ap.signedCertificateBA);
c.decode (bais});

// save received public key to file
// (may be used in RSA implementation)

FileOutputStream fosPublic =
new FileOutputStream("keys/" +
c.principal.getName () +
" publicKey"):
ObjectOutputStream oosPublic = new
ObjectOutputStream(fosPublic);
oosPublic.writeObject (c.publicKey);
fosPublic.close();
oosPublic.close();

return true; // return from successful authentication

} // end if (c.serverName.equals(dest)
else {
System.out.println("ACU: Cert principal does not match
destination!");
return false;

}

} // end if (ap.certificateRequestReply == true)
else {
System.out.println("Cert reply not received!");
return false;

}

} catch (Exception e) {
System.out.println(e);
return false;

}

} // end method

// sendAPBA method

/)= m—————
private static void sendAPBA(String destination,
int port,
byte[]l apBA)
throws Exception {
Socket s = new Socket(destination, port); :
OutputStream os = s.getOutputStream();
os.write(apBA);
os.close();
s.close();
}
[/ —————
// receiveAPBA method
e

private static byte[] receiveAPBA (byte[] incomingObject, Socket s)
throws Exception ({
InputStream is = s.getInputStream();
int cc;
int len = 0;

while ((cc = is.read()) != -1)
incomingObject{len++] = (byte)cc;
is.close();
s.close();
return incomingObject;
}
VR
// serialize method (from Object to bytel[])
/[

private static byte[] serialize(Object obj) throws Exception {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
ObjectOutputStream 00s = new ObjectOutputStream(baos);
oos.writeObject (obj);
oos.flush():
oos.close();
return baos.toByteArray();

// deserialize method (from byte[] to Object)

[/ e

private static Object deserialize(byte[] ba) throws Exception {
ByteArrayInputStream bais = new ByteArrayInputStream(ba);
ObjectInputStream ois = new ObjectInputStream(bais);
ois.close();
return ois.readObject();

45

public AgentState getState(AgentFolder af) throws Exception ({
return (AgentState) (deserialize(af.agentStateBA));

public byte[] saveState(AgentState as) throws Exception {
return serialize(as);

public String getDestination(String nextDest) throws Exception {
FileInputStream fis = new FileInputStream(nextDest);
DataInputStream dis new DatalnputStream(fis);
return dis.readLine():

public String getData() throws Exception {
FileInputStream fis = new FileInputStream("data/IntelData");
DataInputStream dis = new DatalnputStream(fis);
return dis.readlLine();

46

//***

// File: AgentPacketServer.java
// Name: LT Roy J. Virden

// Date: 29 November 1997

// Advisor: Professor Dennis Volpano
// System: Solaris V2.5 JDK1.1.2

//***

import java.io.*;
import java.net.*;
import agentUtil.*;
import java.security.¥*;

[/ e

// main sets the system security manager. Then it listens
// for a connection request, on port 6011, for an agent
// folder. A new Thread is created and

// added to the CPU scheduler which handles the incoming
/7 agent packets.

//mm—mm e

public static void main(String args[]) throws Exception {

SecurityManager secMgr = new MobileAgentSecurityMgr();
System.setSecurityManager (secMgr) ;

try {

CPUScheduler cpuScheduler = new CPUScheduler (50);
cpuScheduler.start();

Thread MobileAgentThread;
// allows multiple threaded clients on local port 6011
ServerSocket ssl = new ServerSocket (6011);
while (true) {
// accept connection from client
MobileAgentThread = new AgentPacketHandler(ssl.accept()):;

cpuScheduler.addThread (MobileAgentThread) ;
MobileAgentThread.start () ;

}

} catch (IOException e) { System.out.println(e);}

47

class AgentPacketHandler extends Thread {

Socket sock;

public AgentPacketHandler (Socket s) {
this.sock = s;

/[mmmmmm e
// threaded run method
[/ mmmmmmm e
public void run() {
try {
[/ ==mmmmmmmm .
// read incoming AgentPacket request, deserialize and cast
[/ ~=mmmmm e

byte[] incomingObject = new byte[10000];
receiveAPBA (incomingObject, sock);

AgentPacket ap = (AgentPacket) (deserialize(incomingObject)):;
System.out.println("APS: ap.certificateRequestReply = " +
ap.certificateRequestReply);

/[===mmmmmmm

// handle certificate

[/ ==mmmmmmm e

if (ap.certificateRequestReply == true) { .
CertificateClass c = new CertificateClass();
ByteArrayInputStream bais =

new ByteArrayInputStream(ap.signedCertificateBA);
c.decode (bais);

// check list of trusted hosts

if (c.principal.equals("rol40203.cc.nps.navy.mil"
c.principal.equals("rol40204.cc.nps.navy.mil"”
c.principal.equals("rol40206.cc.nps.navy.mil"
c.principal.equals("rol40207.cc.nps.navy.mil"

// set RAgentPacket reply, get cert, serialize & send

/=== m————

ap.certificateRequestReply = true;

FileInputStream fisSCBA = new
FileInputStream("certs/SCBA_Certificate");

ObjectInputStream 0isSCBA = new

48

ObjectInputStream(fisSCBA);
ap.signedCertificateBA =
((byte[])o0isSCBA.readObject());
byte[] apBA = serialize(ap);
sendAPBA (c.principal.toString(), 6012, apBA);

// (goto AgentCodeUtility.java)

/[mmmmmmmm e
// read incoming AgentPacket byte[], deserialize & cast
//==mmmmmmmm

ServerSocket ss3 = new ServerSocket (6013);

Socket s3 = ss3.accept();

receiveAPBA (incomingObject, s3);
ss3.close();

ap = (AgentPacket) (deserialize (incomingObject));
[/ ——mm——————

// handle agentFolder

/] ==mmmmmmme

if (ap.certificateRequestReply == false) {

if (verifyAgentFolder(ap, c) == true) {
System.out.println("APS: agentFolder verified!");

AgentFolder af =
(AgentFolder) (deserialize (ap.agentFolderBA));

// check list of trusted originating hosts
// [optional]

if (af.userID.equals("rjvirden")) {

// create agent utilities and get instance of
// agentFolder code

AgentCodeUtilityInterface util = new
AgentCodeUtility();

CodeLloader codelLoader = new CodeLoader();

AgentCodeInterface agentCode =
codeLoader.getActive (af.agentCodeBA) ;

agentCode.exec(af, util); // start agent code

} // end if (af.userID.equals("rjvirden"))
else System.out.println("APS: User not
authenticated!");

} // end if (verifyAgentFolder (ap) == true)
else System.out.println("APS: Agent does not
verify!");

} // end if (ap.certificateRequestReply == false)

else System.out.println("APS: Agent Folder not
received!");

49

} // end if(c.principal.equals("rol40204.cc.nps.navy.mil"))
else System.out.println("APS: " + c.principal.getName() +
" not trusted!");

} // end if (ap.certificateRequestReply == true)
else System.out.println("APS: Certificate Request not

received!");
} catch (Exception e) {
System.out.println("APS run method exception: " + e);
}
} // end run
/[mmmmmmmmmm
// sendAPBA method
/ /=== mmmm e
private static void sendAPBA(String destination,
int port,

byte[]l apBA)
throws Exception ({
Socket s = new Socket (destination, port);
OutputStream os = s.getOutputStream();
os.write(apBA);
os.close();
s.close();

private static byte[] receiveAPBA(byte[] incomingObject, Socket s)
throws Exception {

InputStream is = s.getInputStream();

int cc;

int len = 0;

while ((cc = is.read()) != -1)
incomingObject[len++] = (byte)cc;

is.close():
s.close();
return incomingObject;

private static Object deserialize(byte[] ba) throws Exception {
ByteArrayInputStream bais = new ByteArrayInputStream(ba);
ObjectInputStream ois = new ObjectInputStream(bais);
ois.close();
return ois.readObject();

50

private static byte[] serialize(Object obj) throws Exception {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
ObjectOutputStream oos new ObjectOutputStream(baos);
oos.writeObject (obj);
oos.flush{();
oos.close();
return baos.toByteArray():;

// verifyAgentFolder method get sender's publicKey and verify
/] =mmmmmmm e e
private static boolean verifyAgentFolder (AgentPacket ap,
CertificateClass c)
throws Exception {
Signature dsa = Signature.getInstance ("DSA");
dsa.initVerify(c.publicKey);
dsa.update (ap.agentFolderBA) ;
boolean verified = dsa.verify(ap.agentFolderBASignature);
return verified;

}

} // end class

51

//*-k***

// File: BuildCertificate.java

// Name: LT Roy J. Virden

// Date: 24 November 1997

// Advisor: Professor Dennis Volpano
// System: Solaris V2.5 JDK1.1.2

//***

import agentUtil.*;
import java.io.*;
import java.security.*;
import java.net.*;

Y

// main

e

public static void main(String [] args) throws Exception {
/)= ————
// get local host name and initialize principals
.

AgentCodeUtilityInterface util = new AgentCodeUtility();
PrincipalHost ph = new PrincipalHost (util.getLocation());
PrincipalHost pCA = new PrincipalHost ("CA");

[/

// create certificate and get members

[=mmmmmmmem

CertificateClass c¢ = new CertificateClass():

ph;

new FileInputStream("keys/" +
ph.getName () + "_publicKey"):;

new ObjectInputStream(fisPublic);

c.publicKey ((PublicKey)oisPublic.readObject ());

c.guarantor pCA;

c.format = "DSA";

fisPublic.close();

oisPublic.close();

c.principal
FileInputStream fisPublic

ObjectInputStream oisPublic

// get outputStream to file and encode certficate.

// this implementation of encode performs a DSA signing. the
// resulting byte array is then written to the output stream
// specified as an input parameter (a file in this case).

FileOutputStream fosSCBA = new
FileOutputStream("certs/SCBA Certificate");
c.encode (fosSCBA) ;

52

//***

// File: CertificateClass.java

// Name: LT Roy J. Virden

// Date: 25 November 1997

// Bdvisor: Professor Dennis Volpano
// System: Solaris V2.5 JDK1.1.2

//***

import agentUtil.*;
import java.io.*;
import java.security.*;

/e e e e e e e o e e
// CertificateClass class (must be able to access keys and certs

// directories)

/= e

public class CertificateClass implements Certificate, Serializable {

public Principal principal;
public PublicKey publicKey;
public Principal guarantor;
public String format;

public CertificateClass() {
this.super();

public String getFormat() {
return this.format;

public Principal getGuarantor() {
return this.guarantor;

public Principal getPrincipal() {
return this.principal;

}

53

public PublicKey getPublicKey() {
return this.publicKey;

// toString method returns a String

[/ e
public String toString(boolean bool) {
return this.getPrincipal ().getName();

[/ =mmmmmm e
// encode method encodes a certificate to an outputStream
[/ mmmmmm e
public void encode (OutputStream fosSCBA) {
-try {
/] m—————————
// serialize 'this' certificate to a byte array
/)==—mm————
byte[] cBA = serialize(this);
/== — e
// get CA privateKey, read byte[] message and sign it
e

FileInputStream fisPrivateCA =
new FileInputStream("keys/" + this.guarantor.getName() +
" privateKey");
ObjectInputStream oisPrivateCA = new
ObjectInputStream{fisPrivateCA);
Signature dsa = Signature.getInstance ("DSA");
dsa.initSign((PrivateKey)oisPrivateCA.readObject());
dsa.update (cBA) ;
byte [] cBASignature = dsa.sign();
fisPrivateCA.close();
oisPrivateCA.close();

R
// create signed certificate, get members and serialize
[/ =mmmmmmmmm

SignedCertificate sc = new SignedCertificate();
sc.certificateBA = CBA;
sc.certificateBASignature = cBASignature;

byte[] scBA = serialize(sc);

/===

// write certificate to file

//==m——————

ObjectOutputStream 0osSCBA = new ObjectOutputStream(fosSCBA);
00sSCBA.writeObject (scBA) ;

54

fosSCBA.close();
00sSCBA.close();

} catch (Exception e) {
System.out.println("CertificateClass.encode exception: " + e);

public void decode (InputStream bais) {

try {
/)=
// deserialize inputStream (ap.signedCertificateBA in this
// case)
R

ObjectInputStream ois = new ObjectInputStream(bais);
SignedCertificate sc (SignedCertificate) (ois.readObject ());
boolean verified verifyCertificate(sc);

ois.close();

It

// if certificate verifies, deserialize and load 'this'
// certificate
// with incoming certificate fields

if (verified) {
CertificateClass tempCert =
(CertificateClass) (deserialize(sc.certificateBA));

this.principal = tempCert.principal;
this.publicKey tempCert.publicKey;
this.guarantor = tempCert.guarantor;
this. format = tempCert.format;

}

} catch (Exception e) ({

System.out.println("CertificateClass.decode exception: " + e);
}
}
[/ mmmmmmm e
// serialize method (from Object to byte[])
[/ =mmmmmmm e

private static byte[] serialize(Object obj) throws Exception {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
ObjectOutputStream oos new ObjectOutputStream(baos);
oos.writeObject (obj);
oos.flush();
oos.close();
return baos.toByteArray();

[l

55

// deserialize method (from byte[] to Object)

private static Object deserialize(byte[] ba) throws Exception {
ByteArrayInputStream bais = new ByteArrayInputStream(ba);
ObjectInputStream ois = new ObjectInputStream(bais);
ois.close();
return ois.readObject();

private static boolean verifyCertificate(SignedCertificate sc)
throws Exception {
FileInputStream fisPublicCA =
new FileInputStream("keys/" + "CA" + " publicKey");
ObjectInputStream oisPublicCA = new
ObjectInputStream(fisPublicCa);
Signature dsa = Signature.getInstance ("DSA");
dsa.initVerify((PublicKey)oisPublicCA.readObject());
dsa.update(sc.certificateBA);
boolean verified = dsa.verify(sc.certificateBASignature);
return verified;

56

//***

// File: GenerateDSAKeys.java

// Name: LT Roy J. Virden

// Date: 29 November 1997

// Advisor: Professor Dennis Volpano
// System: Solaris V2.5 JDK1.1.2

//***

import java.io.*;
import java.security.*;
import java.net.*;
import agentUtil.*;

S

public static void main(String [] args) {

// generate and store public and private keys
// Only produce one CA keypair and copy to other machines

AgentCodeUtilityInterface util = new AgentCodeUtility():;

generateAndStoreKeys (util.getLocation(), util.getLocation() +
"seed string");

generateAndStoreKeys ("CA", "CA seed string");

public static void generateAndStoreKeys(String name,
String inputSeedString) {

try {

new FileOutputStream("keys/" +
name + " privateKey"):

new FileOutputStream("keys/" +
name + " _publicKey");

ObjectOutputStream oosPrivate = new
ObjectOutputStream(fosPrivate);

ObjectOutputStream oosPublic = new
ObjectOutputStream(fosPublic);

FileOutputStream fosPrivate

FileOutputStream fosPublic

57

String seedString = inputSeedString;
byte[] seed seedString.getBytes{);

KeyPairGenerator keyGen = KeyPairGenerator.getInstance ("DSA");
keyGen.initialize (1024, new SecureRandom(seed));
KeyPair pair = keyGen.generateKeyPair ();

oosPrivate.writeObject (pair.getPrivate());
oosPublic.writeObject (pair.getPublic());
oosPrivate.close();

oosPublic.close();

} catch(NoSuchAlgorithmException e) {
System.out.println("NoSuchAlgorithmException") ;

} catch(java.io.IOException e) {
System.out.println("IOException");

}

58

//***

// File: MobileAgentSecurityMgr.java

// Name: LT Roy J. Virden

// Credit: This class is an adaptation of Professor Volpano’s
// code from the CS3973 Advanced Object-Oriented

// Programming in Java course.

// Date: 29 November 1997 _

// Advisor: Professor Dennis Volpano

// System: Solaris V2.5 JDK1.1.2

//***

import java.io.*;

class MobileAgentSecurityMgr extends SecurityManager {

protected MobileAgentSecurityMgr() ({
super();
}
// allow AgentCodeUtilityInterface fdeYtes to open a socket

public void checkConnect (String host, int port) { }
public void checkConnect (String host, int port, Object o) { }

// allow creation of a new ClassLoader object
public void checkCreateClassLoader() { }
// allow active node server to listen on a port
public void checkAccept (String host, int port) { }
// prevent ExceptionInlInitializerError at server startup
public void checkAccess (Thread t) { }
public void checkAccess (ThreadGroup g) { }
public void checkListen(int port) { }
public void checkLink{String lib) { }
public void checkPropertyAccess(String k) { }
// allow getInputStream().read(buf) to receive incoming class
public void checkRead(FileDescriptor fd) { }
// allow getOutputStream() to forward a class
public void checkWrite (FileDescriptor £d) { }
public void checkRead(String file) ({
if (! (file.endsWith("java.security") |1
file.endsWith("_publicKey") !
I
|1

file.endsWith("_privateKey")
file.endsWith ("SCBA Certificate")

59

file.endsWith("destinationl") [}

file.endsWith("destination2") |

file.endsWith("IntelData")))
throw new SecurityException(file + " unreadable");

}

public void checkWrite(String file) {
if (! (file.startsWith("/tmp/") Il
file.endsWith("_publicKey")))
throw new SecurityException(file + " unwritable");

//***

// File: StartAgent.java

// Name: LT Roy J. Virden

// Date: 29 November 1997

// Advisor: Professor Dennis Volpano
// System: Solaris V2.5 JDK1.1.2

//***

import java.io.*;
import java.net.*;
import java.util.*;
import agentUtil.*;
import java.security.*;

J] == e e e e e e e e e e e e
// StartAgent class injects AgentCode.class into the home agent

// server. Command: java StartAgent

[/ = e e e e e e e e o e

/[mmmmmm e
// main
[/ mmmmmmmm e
public static void main(String argv{[]) throws Exception {
[/===mmmmmmm
// access AgentCodeUtility methods
[/=mmmmmmm =
AgentCodeUtilityInterface util = new AgentCodeUtility();
/)=
// build agentfolder
/===
AgentFolder af = new AgentFolder():;
af.userID = "rjvirden";
af.password = "password";

// get bytecode

FileInputStream fis = new FileInputStream("AgentCode.class");
byte[] bytecode = new byte[fis.available()];
fis.read(bytecode);

System.out.println("uploading agentCode:");

af.agentCodeBA = bytecode;

AgentState as = new AgentState();

as.initialvisit = true;

af.agentStateBA = util.saveState(as);

af.encrypted = false; // true indicates agentData
// encrypted with sessionKey

af.sessionKeyBA = null; // used to encrypt agentData
// member

61

// get local host name for injection

/) ==m——————-
String destination = util.getLocation(); // initial home host

util.fwdAgent (af, destination);
System.out.println("StartAgent finished");
// (goto AgentCodeUtility.java)

}

62

3. AGENTUTIL PACKAGE

//***

// File: AgentCodeInterface.java
// Name: LT Roy J. Virden

// Date: 10 November 1997

// Advisor: Professor Dennis Volpano
// System: Solaris V2.5 JDK1.1.2

//***

package agentUtil;

public void exec(agentUtil.AgentFolder b,
agentUtil.AgentCodeUtilityInterface u)
throws Exception;

63

//***

// File: AgentCodeUtilityInterface.java
// Name: LT Roy J. Virden

// Date: 17 December 1997

// Advisor: Professor Dennis Volpano

// System: Solaris V2.5 JDK1.1.2

//***

package agentUtil;

public String getData() throws Exception;

64

//***

// File: AgentFolder.java

// Name: LT Roy J. Virden

// Date: 16 November 1997

// Advisor: Professor Dennis Volpano
// System: Solaris V2.5 JDK1.1.2

//***

package agentUtil;
import java.io.*;

public class AgentFolder implements Serializable {

public String wuserID;

public String password;

public byte[] agentCodeBA;
public byte[] agentStateBA;
public boolean encrypted = false;
public byte[] sessionKeyBA;

65

//***

// File: AgentPacket.java

// Name: LT Roy J. Virden

// Date: 24 November 1997

// Advisor: Professor Dennis Volpano
// System: Solaris V2.5 JDK1.1.2

// Description:
//***

package agentUtil;
import java.io.*;

public class AgentPacket implements Serializable {
public boolean certificateRequestReply = false;
public byte[] agentFolderBA;

public byte[] agentFolderBASignature;
public byte[] signedCertificateBA;

// AgentPacket Certification Request or Reply constructor
// (for debug)

public AgentPacket (boolean r) {

certificateRequestReply = r;

public AgentPacket (boolean r, byte[] b) {

signedCertificateBA = b;

e

// BAgentPacket AgentFolder constructor

/) mmmmmmmm e

public AgentPacket (byte[] b, bytel[] s) {
certificateRequestReply = false;
agentFolderBA = b;

agentFolderBASignature s;

66

//***

// File: AgentState.java

// Name: LT Roy J. Virden

// Date: 16 December 1997

// Advisor: Professor Dennis Volpano
// System: Solaris V2.5 JDK1.1.2

//***

package agentUtil;
import java.io.*;

public class AgentState implements Serializable |{
public boolean initialVisit;

public String tempDestination;
public String collectedData;

67

//***

// File: CodeLoader.java

// Name: LT Roy J. Virden

// Credit: This class was authored by Professor Volpano and
// distributed in his CS3973 Advanced Object-Oriented
// Programming in Java course.

// Date: 10 November 1997

// Advisor: Professor Dennis Volpano

// System: Solaris V2.5 JDKl1.1.2

//***

package agentUtil;
import java.util.*;

public class CodeLoader {
public AgentCodelInterface getActive(byte[] b) throws
InstantiationException,
IllegalAccessException,
ClassCastException
ProgramlLoader loader = new ProgramLoader():;

Class classOf = loader.defClass(b, 0, b.length);

return (AgentCodelnterface)classOf.newInstance():;

class ProgramLoader extends ClassLoader {
private Hashtable Classes = new Hashtable();

// need defClass since defineClass is protected and hence
// inaccessible to Codeloader which is in package active

public Class defClass (byte[] b, int off, int len) {
return this.defineClass (b, off, len);
}

public Class loadClass(String name, boolean resolve)
throws ClassNotFoundException
{
try {
Class newClass = (Class)Classes.get (name);

68

if

}

(newClass == null) { // not yet loaded

newClass = findSystemClass (name);
if (newClass != null)
return newClass;

// class not found -- need to load it
newClass = Class.forName (name);
Classes.put (name, newClass);

return newClass;

} catch(ClassNotFoundException e) {
throw new ClassNotFoundException(e.toString());

}

69

//***

// File: CPUScheduler.java

// Name: LT Roy J. Virden

// Credit: This class is adapted from a scheduler in Java Threads
// authored by Scott Oaks and Henry Wong (Oaks, 1997).

// Date: 10 November 1997

// Advisor: Professor Dennis Volpano

// System: Solaris V2.5 JDK1.1.2

//***

package agentUtil;

// class CPUScheduler is a round-robin thread scheduler
public class CPUScheduler extends Thread {

private int timeslice; // # of millis thread should run
private Queue threadQueue; // all the threads to be run
private static boolean initialized = false;

// create a scheduler with timeslice t
public CPUScheduler (int t) {

if (isInitialized())
throw new SecurityException("Already initialized");
threadQueue = new Queue():;
timeslice = t;
setPriority(6);
setDaemon (true);

}

// test for existing scheduler
private synchronized static boolean isInitialized() ({

if (initialized)
return true;

initialized = true;
return false;

// add a thread to the scheduler's thread queue
public synchronized void addThread(Thread t) {

t.setPriority(2);
threadQueue = threadQueue.insertQ(t):;

// schedules threadQueue
public void run() {

Thread current = null;
while (true) {

synchronized (this) {

70

while (threadQueue.isemptyQ()) {
try {
this.wait();
} catch (InterruptedException ie) { }

}

current = (Thread) threadQueue.frontQ();
threadQueue = threadQueue.leaveQ();

}

try {

current.setPriority(4);
} catch (Exception e) { continue; }; // don't reinsert thread

try {
Thread.sleep(timeslice);
} catch (InterruptedException ie) { };

try {
current.setPriority(2);
} catch (Exception e) { continue; }; // don't reinsert thread

synchronized (this) {

threadQueue = threadQueue.insertQ(current):;
}

71

//***

// File: PrincipalHost.java

// Name: LT Roy J. Virden

// Date: 25 November 1997

// Advisor: Professor Dennis Volpano
// System: Solaris V2.5 JDK1.1.2

//***

package agentUtil;

import java.net.*;
import java.io.*;
import java.util.¥*;
import java.security.*;

public class PrincipalHost implements Principal, Serializable {

String name;

public PrincipalHost (String nameIn) {
this.name = nameln;

public boolean equals(Object o) {
String namelIn = (String) (o);
boolean match = this.getName().equals(nameln);
return match;

// getName method returns a String

[/ ==
public String getName() {
return this.name;

// hashCode not implemented

[/

public int hashCode () {
return 0;

}

72

public String toString()
return this.getName();

}

{

73

//***

// File: Queue.java

// Name: LT Roy J. Virden

// Credit: This class was authored by Professor Volpano and
// distributed in his CS$3973 Advanced Object-Oriented
// Programming in Java course.

// Date: 10 November 1997

// Advisor: Professor Dennis Volpano

// System: Solaris V2.5 JDK1.1.2

//***

package agentUtil;
import java.io.*;

public class Queue {

private Object data;
private Queue next;

// constructor for an empty Queue
public Queue() {

this.data = null;

this.next = this;

// inserts object at back of queue
public synchronized Queue insertQ(Object object) {

Queue newNode new Queue();

this.data = object;
newNode.next = this.next;
this.next = newNode;

return newNode;

// returns object at front of queue
public synchronized Object frontQ() {

return this.next.data;

// delete object at front of queue
public synchronized Queue leaveQ() {

if (isemptyQ()) { 1}
else {

this.next = this.next.next;
}

return this;

74

// returns true if queue is empty
public synchronized boolean isemptyQ() {

if (this.next == this) {
return true;

}
else {
return false;

}

// provides output of Queue
public synchronized String toString() {

String s = new String("\n");

for (Queue g = this.next; q != this; g = g.next)
s = s + g.data.toString() + "\n";

return s + "—--=-";

75

//****-k**

// File: SignedCertificate.java
// Name: LT Roy J. Virden

// Date: 24 November 1997

// Advisor: Professor Dennis Volpano
// System: Solaris V2.5 JDK1.1.2

// Description:
//’k*******‘k**

package agentUtil;
import java.io.*;

public class SignedCertificate implements Serializable {

public byte[] certificateBA;
public byte[]l certificateBASignature;

76

4. MISCELLANEOUS

//**

// File: data (header not included in data file)
// Name: LT Roy J. Virden

// Date: 29 November 1997

// BAdvisor: Professor Dennis Volpano

// System: "Solaris V2.5 JDK1.1.2

//***

Two F-4 aircraft departed Airfield Alpha at 1003Z

77

//***

// File: dest (header not included in dest file)
// Name: LT Roy J. Virden

// Date: 29 November 1997

// Advisor: Professor Dennis Volpano

// System: Solaris V2.5 JDK1.1.2

//***

rol40206.cc.nps.navy.mil

78

//***

// File: typescript (this header not included in printout)
// Name: LT Roy J. Virden

// Date: 29 November 1997

// BAdvisor: Professor Dennis Volpano

// System: Solaris V2.5 JDK1.1.2

//***

<114 ropub3(Solaris) /test/prototype3> java StartAgent
uploading agentCode:

Destination Authenticated

agentPacket forwarded to rol40203.cc.nps.navy.mil
StartAgent finished

APS: ap.certificateRequestReply = true

APS: agentFolder verified!

agentCode: I'm at Home (rol40203.cc.nps.navy.mil)
agentCode: sleeping 2 seconds. . .

agentCode: forwarding agent to TIHQ (rol40204)
Destination Authenticated

agentPacket forwarded to rol40204.cc.nps.navy.mil

APS: ap.certificateRequestReply = true

APS: agentFolder verified!

agentCode: I have returned Home (rol40203.cc.nps.navy.mil)
agentCode: sleeping 2 seconds.

agentCode: Here is the data you requested:

agentCode: Two F-4 aircraft departed Airfield Alpha at 10032

APS: ap.certificateRequestReply = true

APS: agentFolder verified!

agentCode: I have returned Home (rol40203.cc.nps.navy.mil)
agentCode: sleeping 2 seconds.

agentCode: Here is the data you requested:

agentCode: Three F-4 aircraft departed Airfield Alpha at 10152

79

LIST OF REFERENCES

Black, D. L., Kahn, C., Mobile Agents and Network Survivability, position paper for the
Information Survivability Workshop — ISW’97, San Diego, California, February 12-13,
1997.

Chess, D., Grosof, B., Harrison, C., Levine, D., Parris, C., Tsudik, G., Itinerant Agents

Jor Mobile Computing, IEEE Personal Communications Magazine, 2(5):34-49, October
1995. http://www.research.ibm.com/massive

Edmiston, M., Gregg, D., Wirth, D., Decision Support for Reconnaissance Using
Intelligent Software, Masters Thesis, Naval Postgraduate School, in preparation.

Farley, S. R., Mobile Agent System Architecture, Java Report, p. 39, May 1997.

Farmer, W. M., Guttman, J. D., and Swarup, V., Security for mobile agents: Issues and
requirements. In Proceedings of the 19th National Information Systems Security
Conference, pages 591-597, Baltimore, Md., October 1996

Harrison, C. G., Chess, D. M., Kershenbaum, A., Mobile Agents: Are they a good idea?,
Research Report, IBM Research Division, T. J. Watson Research Center, Yorktown
Heights, NY, March 28, 1995.

Kalakota, R., Whinston, A. B., Frontiers of Electronic Commerce, p. 596,
Addison-Wesley Publishing Co., 1996.

Minar, N., Computational Media for Mobile Agents, paper submitted for MAS737:
Software Agents Seminar, December 31, 1996.

Minsky, M., The Soéiety of Mind, Simon and Schuster, Inc., 1985.

Muller, J. P., The Design of Intelligent Agents: A Layered Approach, Springer-Verlag,
1996.

Oaks, S., Wong, H., Java Threads, O’Reilly and Associates, Inc., January 1997.

Russell, D., Gangemi, Sr., G.T., Computer Security Basics, O’Reilly and Associates, Inc.,
July 1991.

Stallings, W., Data and Computer Communications, p. 687, Prentice Hall, 1997.
Volpano, D. M., unpublished manuscript, 1997

Yee, B., A Sanctuary for Mobile Agents, position paper from DARPA Workshop on
Foundations for Secure Mobile Code, March 26-28, 1997.

81

BIBLIOGRAPHY

Alvarez, C., Intelligent agents help to minimize bandwidth use by browsing offline, LAN
Times, January 20, 1997.

An Introduction to Safety and Security in Telescript, Northeast Parallel Architectures
Center at Syracuse University, Syracuse NY available at
http://king.syr.edu:2006/Misc/IWT/Technologies/Telescript/SafeTS.html

Black, D. L., Kahn, C., Mobile Agents and Network Survivability, position paper for the
Information Survivability Workshop — ISW’97, San Diego, California, February 12-13,
1997.

Burrows, M., Abadi, M., Needham, R., 4 Logic of Authentication, ACM Trans.
Computer Systems, vol. 8, pp. 18-36, February, 1990.

Cardelli, L., Mobile computations, In Mobile Object Systems: Towards the

Programmable Internet, pages 3-6. Springer-Verlag, April 1997. Lecture Notes in
Computer Science No. 1222.

Chess, D., Grosof, B., Harrison, C., Levine, D., Parris, C., Tsudik, G., Itinerant Agents
Jor Mobile Computing, IEEE Personal Communications Magazine, 2(5):34-49, October
1995. http://www.research.ibm.com/massive

Crowston, K., Market-Enabling Internet Agents, Syracuse University.

Dean, D., Felten, E., Secure Mobile Code: Where do we go from here?, position paper
from DARPA Workshop on Foundations for Secure Mobile Code, March 26-28, 1997.

Denning, D. E., Cryptography and Data Security, Reading, Massachusetts: Addision-
Wesley Publishing Company,1983.

Dyer, D., Agent-Based Systems Concept, DARPA Agent Based Systems Program
presentation, July 16, 1997. http://abs.wwwhome.com

Edmiston, M., Gregg, D., Wirth, D., Decision Support for Reconnaissance Using
Intelligent Software, Masters Thesis, Naval Postgraduate School, in preparation.

Farley, S. R., Mobile Agent System Architecture, Java Report, p. 39, May 1997.
Farmer, W. M,, Guttman, J. D., and Swarup, Vipin, Security for mobile agents: Issues

and requirements. In Proceedings of the 19th National Information Systems Security
Conference, pages 591-597, Baltimore, Md., October 1996.

83

Feigenbaum, J., Lee, P., Trust Management and Proof-Carrying Code in Secure
Mobile-Code Applications, position paper from DARPA Workshop on Foundations for
Secure Mobile Code, March 26-28, 1997.

Focardi, R., Gorrieri, R., Non Interference: Past, Present and Future, position paper from
DARPA Workshop on Foundations for Secure Mobile Code, March 26-28, 1997.

Fournet, C., Security within a Calculus of Mobile Agents?, position paper from DARPA
Workshop on Foundations for Secure Mobile Code, March 26-28, 1997.

Franklin, M. K., Reiter, M. K., The Design and Implementation of a Secure Auction
Service, In Proceedings of IEEE Symposium on Security and Privacy, pp2-14, Oakland,
California, May 8-10, 1995.

Gong, L., New Security Architectural Directions for Java (Extended Abstract), In
Proceedings of IEEE COMPCON, pp.97-102, San Jose, California, February 1997.

Gong, L., Surviveable Mobile Code is Hard to Build, position paper from DARPA
Workshop on Foundations for Secure Mobile Code, March 26-28, 1997.

Gordon, A. D., Nominal Calculi for Security and Mobility, position paper from DARPA
Workshop on Foundations for Secure Mobile Code, March 26-28, 1997.

Gray, R. S., Agent Tcl: A flexible and secure mobile-agent system, In Proceedings of
Fourth Annual Usenix Tcl/Tk Workshop, pp. 9-23, 1996.

Gunter, C., Homeier, P., Nettles, S., Infrastructure for Proof-Referencing Code, position
paper from DARPA Workshop on Foundations for Secure Mobile Code, March 26-28,
1997.

Harrison, C. G., Chess, D. M., Kershenbaum, A., Mobile Agents: Are they a good idea?,
Research Report, IBM Research Division, T. J. Watson Research Center, Yorktown
Heights, NY, March 28, 1995.

Heintze, N., Riecke, J., The SLam Calculus: Programming with Security and Integrity,
position paper from DARPA Workshop on Foundations for Secure Mobile Code, March
26-28, 1997.

IBM Corporation, Things that Go Bump in the Net, Web page at
http://www.research.ibm.com/massive, 1995.

Jan V., Secure object spaces. In Proceedings of the 2nd ECOOP Workshop on Mobile
Object Systems, pages 41-48, Linz, Austria, July 1996.

Kalakota, R., Whinston, A. B., Frontiers of Electronic Commerce, pp 595-627,
Addison-Wesley Pub Co, January 1996.

Kalakota, R., Stallaert, J., Whinston, A. B., Mobile Agents and Mobile Workers,
Proceedings of the 29™ Annual Hawaii International Conference on System Sciences,
1996.

Kato, K., Toumura K., Matsubara K., Aikawa S., Yoshida J., Kono K., Taura K., and

Sekiguchi T., Protected and secure mobile object computing in PLANET. In Proceedings
of the 2nd ECOOP Workshop on Mobile Object Systems, Linz, Austria, July 1996.

Lampson, B., Abadi, M., Burrows, M., Wobber, E., Authentication in Distributed
Systems: Theory and Practice, Proceedings of the 13th ACM Symposium on Operating
Systems Principles, 1991.

Lange, D. B., Chang, D. T., Programming Mobile Agents in Java, a white paper, IBM
Corporation, September 9, 1996.

Lee, P., Necula, G., Research on Proof-Carrying Code for Mobile-Code Security,
position paper from DARPA Workshop on Foundations for Secure Mobile Code, March
26-28, 1997.

Meadows, C., Detecting Attacks on Mobile Agents, position paper from DARPA
Workshop on Foundations for Secure Mobile Code, March 26-28, 1997.

Meseguer, J., Talcott, C., Rewriting Logic and Secure Mobility, position paper from
DARPA Workshop on Foundations for Secure Mobile Code, March 26-28, 1997.

Minar, N., Computational Media for Mobile Agents, paper submitted for MAS737:
Software Agents Seminar, December 31, 1996.

Minsky, M., The Society of Mind, Simon and Schuster, Inc., 1985.

Minsky, Y., Rensse, R., Schneider, F. B., Crytpographic Support for Fault-Tolerant
Distributed Computing, Department of Computer Science, Cornell University, Ithaca,
NN, July 5, 1996. :

Muller, J. P., The Design of Intelligent Agents: A Layered Approach, Springer-Verlag,
1996. ‘

Oaks, S., Wong, H., Java Threads, O’Reilly and Associates, Inc., January 1997.

Russell, D., Gangemi, Sr., G.T., Computer Security Basics, O’Reilly and Associates, Inc.,
July 1991.

Sommers, B., Agents: Not just for Bond anymore, Javaworld, March 15, 1997.

85

Swarup, V., Trust Appraisal and Secure Routing of Mobile Agents, position paper from
DARPA Workshop on Foundations for Secure Mobile Code, March 26-28, 1997.

Thirunavukkarasu, C., Finin, T., Mayfield, J., Secret Agents - A Security Architecture for
the KOML Agent Communications Language, in CIKM workshop on Intelligent
Information Agents, Baltimore, December 1995.

Venners, B., Under the Hood: The architecture of aglets, Javaworld, March 17, 1997,
Volpano, D. M., unpublished manuscript, 1997.

Wetherall, D., Safety Mechanisms for Mobile Code, Area Examination Paper, Telemedia
Networks and Systems Group, Laboratory for Computer Science, Massachusetts Institute
of Technology, November 1995.

Yee, B., 4 Sanctuary for Mobile Agents, position paper from DARPA Workshop on
Foundations for Secure Mobile Code, March 26-28, 1997.

86

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

...

Dudley KNOX LIBIarycococvvuiviiiiriiiieceicininieeeesenesessesesssssessasssssssssessssssssnnen

Naval Postgraduate School
411 Dyer Rd. .
Monterey, California 93943-5101

Commanding Officer e e et s

(Attn: Code 30, CDR Zellmann)
Naval Information Warfare Activity
9800 Savage Rd.

Ft Meade, MD 20755-6000

National SECUTILY ABENCY ...c.covireriereiererirecreieerieertesreeessesaessesaesssesessessessessessesnes

Suite 6704 ATTN: Steve LaFountain, C4
Fort George G. Meade, MD 20755-6000

Commander, Naval Security Group Command

..

Naval Security Group Headquarters
9800 Savage Road, Suite 6585

Fort George G. Meade, MD 20755-6585
ATTN: N6/Mr. James H. Shearer

HQUSEUCOM
Unit 30400 Box 1000
APO, AE 09128

Dr. Dan BOET ...ttt seesseaees e saesse s s e sesssesesaesessessensssesens

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr. Dennis VOIPANOcc.cecevieriereirerieenieeestsseseesesnesessesesseseesessesssesesassessesssssnsenees

Code CS/Vo
Naval Postgraduate School
Monterey, CA 93943

87

10.

11.

12.

13.

Major Nelson LUAIOWc.ccuriierireirienieiiieesesiestecsst s seestessesessessesessasssesseneenses 1
Air Force Radar Evaluation Squadron

7976 Aspen Avenue

Hill AFB, UT 84056-5846

Commander GUS LOth........coccvevireririeneeerieeeeesteeeneeesnesses s ssesessessessaessanessecses 1
Code EC/Lt

Naval Postgraduate School

Monterey, CA 93943-5121

Dr. Cynthia ITVINEcoueviiiicirrcceciicnt e s 1
Code CS/Ic

Naval Postgraduate School

Monterey, CA 93943

Dr. Deborah HENSZEMN.coeeieieiriereeneccieecntcteee st sres s eas s esas 1
Code CS/Hd

Naval Postgraduate School

Monterey, CA 93943

Dr. Don BrutZman.........ceeeeeoieeeeeerenicenenieceneniessssseceesscssssesssssnssssssnnessssssssssssenes 1
Code UW/Br

Naval Postgraduate School

Monterey, CA 93943

88

